Порядок, хаос, порядок: критерий пятый



Пятый критерий

В восьмидесятые годы результаты наших экспериментов так хорошо согласовались с представлениями о каскаде клеточных процессов, что мне на ум снова и снова приходил мой пятый критерий: удаление анатомического участка, в котором происходят биохимические, клеточные или физиологические изменения, должно препятствовать образованию следов памяти и/или вспоминанию в зависимости от того, когда по отношению к времени тренировки произведено удаление.

Для этого были три причины. Во-первых, я знал, что нам нужно будет провести соответствующий эксперимент, который потребует освоения совершенно новых методов. Во-вторых, я не мог без волнения думать о возможных результатах. И наконец, в-третьих, как я говорил раньше, меня всегда тревожила эстетическая и отчасти даже моральная сторона опытов, связанных с травмированием живых существ, а также проблема интерпретации получаемых данных. Эту проблему мне рано или поздно придется решать. В 1988 году Сэри Дейвис, бывший студент Габриела Хорна, работающий сейчас в Лондоне, опубликовал статью об экспериментах с повреждением левого и правого IMHV у цыплят. Он производил операцию в день их вылупления, а на следующий день обучал пассивному избеганию; после этого они клевали бусину, проявляли недовольство ее вкусом и во всем остальном вели себя нормально, однако у них обнаруживалась амнезия: они вторично клевали горькую бусину [I]1. Нечто в этом роде наблюдал и сам Габриел при изучении импринтинга. Всего этого можно было ожидать, исходя из биохимии, морфологии и нейрофизиологии IMHV после обучения, но мы должны были провести более систематические эксперименты. Я решил уделить этому большую часть 1989 и 1990 годов, так как получил исследовательский грант, позволивший мне намного сократить объем преподавательской и административной работы. Ниже излагается история этих двух лет с их итогами.

*1) Меня не перестает удивлять, что цыплята, у которых повреждена (или удалена, что безразлично) такая сравнительно большая область мозга, все же не погибают и по видимости сохраняют нормальное поведение. Скептики могли бы задаться вопросом, что же делает этот мозг большую часть времени. На это фермер-птицевод мог бы ответить, что единственная функция мозга состоит в том, чтобы удерживать птиц от непрерывной беготни, — это известно с незапамятных времен, с тех пор как первый крестьянин отрубил голову первому петуху, чтобы положить его горшок.

Мы смогли воспроизвести результаты Сэри, а потом продолжить исследования на их основе благодаря приезду в лабораторию двух очень разных физиологов, уже имевших ученую степень, — Терри Паттерсон и Дейва Гилберта. Терри только что защитила диссертацию, работая на цыплятах с Марком Розенцвейгом в Беркли. Карьера Дейва после получения степени в Бирмингеме была не совсем гладкой, и к тому времени, как я получил субсидию, он явно недоиспользовал свои возможности в качестве доктора философии, перебиваясь мытьем витрин, поскольку получить деньги на научную работу в Англии восьмидесятых годов было довольно трудно. Практически с момента появления Терри и Дейва в лаборатории между ними возникла личная неприязнь, но и как экспериментаторы, и в теоретическом плане они составляли великолепную пару. Мы спланировали эксперименты так, чтобы один производил повреждение мозга, второй обучал цыплят, не зная о характере повреждения, а третий (обычно это был я) проводил последующие испытания, опять-таки не зная о сделанном двумя другими.

Мозг повреждали так же, как в нейрофизиологических экспериментах. Цыпленка наркотизировали и стереотаксически вводили в мозг электрод (тонкую проволочку) так, чтобы его кончик оказался в нужном месте. После этого пропускали ток, разогревавший кончик электрода. Под действием повышенной температуры (или высокочастотных колебаний) клетки вокруг электрода погибали; размеры повреждения контролировали, изменяя силу тока и продолжительность воздействия. Затем электрод извлекали, кожу на голове зашивали и цыпленку давали возможность оправиться от наркоза в течение ночи. Для оценки влияния самой операции и наркоза в каждой подопытной группе имелись цыплята, подвергавшиеся «ложной» операции: с ним проделывали все, что и с остальными, но через электрод не пропускали ток. Все это тонкая работа, но при необходимых навыках за рабочий день можно прооперировать до дюжины цыплят. Они хорошо переносили операцию и наркоз: придя в себя, цыплята с поврежденным IMHV или LPO выглядели совершенно нормальными и не отличались ни от ложно оперированных, ни от интактных контрольных особей. После оценки поведения цыплят забивали, а поврежденные участки мозга исследовали под микроскопом. Как и в других случаях, для получения статистически достоверных результатов эксперимент многократно повторяли, чтобы в каждой опытной (не контрольной) группе насчитывалось двенадцать или более цыплят. При четырех рабочих днях в неделю (это дни, когда вылупляются цыплята) с учетом времени, затрачиваемого на ложные операции и на проверку локализации повреждений, для получения одной серии результатов требуются примерно три недели; практически же на это уходит около месяца, поскольку что-то всегда идет не так: то цыплята не вылупляются, то нужно идти на какое-то заседание и т.п.1.

*1) Я давно уже на собственном печальном опыте убедился, что при планировании эксперимента нужно взять максимальное потребное время, удвоить его и добавить еще немного — тогда ваши расчеты окажутся более или менее верными. Следует учитывать еще один важнейший момент если вы налаживаете метод, которым раньше не пользовались, а позаимствовали из чьей-то статьи, он обычно начинает работать не раньше чем с третьей попытки; в двух первых вы каким-то непонятным образом обретаете в кончиках пальцев ту магическую, не поддающуюся описанию силу («безмолвное знание», как назвал ее Майкл Полани, некогда химик, а потом философ), которая позволяет освоить метод не только в теории, но и на практике.

Потратив нужное число месяцев и сделав достаточно ошибок, чтобы освоить методику повреждения мозга, мы смогли приступить к первому этапу — к проверке результатов Сэри. В начале 1989 года мы подтвердили их. Сомнений быть не могло: цыплята с поврежденным IMHV явно обучались пассивному избеганию, т. е. клевали горькую хромированную бусину, так же, как их ложно оперированные собратья, трясли головами, ощутив ее вкус, и отворачивались при повторном предъявлении. Но спустя несколько часов при вторичном испытании они полностью забывали приобретенный опыт и клевали сухую бусину столь же энергично, как и контрольные цыплята, которым раньше давали бусину, смоченную водой. Таким образом, повреждение мозга не влияло на поведение птенцов (клевание бусины), на чувство вкуса или общую подвижность — они лишь не помнили, что следует избегать бусин определенного вида. Теперь нужно было пойти дальше Сэри и производить одностороннее повреждение. И снова мы получили ожидавшийся результат. У цыплят с поврежденным левым IMHV реакция избегания отсутствовала, а при правостороннем повреждении полностью сохранялась. Все было нормально — в полном соответствии с прогнозом, основанным на ранее полученных данных, и с пятым критерием, для запоминания необходим был левый, но не правый IMHV (рис. 11.1).

По логике нашего подхода следовало теперь проверить, что произойдет, если повредить мозг после обучения. Это можно было сделать не раньше чем через час, так как иначе на результатах испытаний могло бы сказаться действие наркоза. К нашему удивлению, даже двустороннее повреждение мозга спустя час после обучения не приводило к амнезии. Итак, первый парадокс: для запоминания необходим интактный левый IMHV, но коль скоро цыплята уже усвоили задачу (по крайней мере в первый час после обучения), IMHV оказывался ненужным [2].

Куда же переместилась память? Учитывая все полученные ранее биохимические и морфологические данные, следовало искать ее следы в LPO. Эксперимент подтвердил это. Двустороннее повреждение LPO через час после обучения действительно вызывало амнезию, которой не было при одностороннем правом или левом повреждении. По-видимому, в норме след памяти после обучения каким-то путем мигрирует из IMHV в LPO, чем и объясняется отсутствие амнестического эффекта повреждения после тренировки. Это был весьма интересный результат, так как он позволял понять, почему мы находим биохимические и морфологические изменения и в IMHV, и в LPO. Тот факт, что для сохранения памяти достаточно одного LPO, правого или левого (одностороннее повреждение не вызывало амнезии!), согласовался с тем, что многие из выявленных нами изменений имели место как в правом, так и в левом LPO, т. е. след памяти о бусине и реакции избегания сохранялся в обоих полушариях (рис. 11.2).

Не довольствуясь столь простым результатом, мы пошли дальше. Что будет, если повредить LPO до обучения? К нашему удивлению, такая операция никак не влияла на память [3] (рис. 11.2).

Если пассивное избегание вырабатывается и при отсутствии LPO, то не происходит ли реорганизации следа памяти каким-то иным образом? Может быть, в этом случае след просто закрепляется в IMHV? Если это так, то повреждение LPO до тренировки и повреждение IMHV после тренировки - две операции, по отдельности не приводящие к амнезии, - при их сочетании у одного и того же цыпленка должны будут вызвать амнезию. Так оно и оказалось в действительности (рис. 11.3). Получив такие результаты, я предположил, что решающая роль принадлежит IMHV. Но Дейв думал иначе. Тогда мы произвели односторонние повреждения, и выяснилось, что он прав. У цыплят, не имевших LPO во время обучения, последующее повреждение левого IMHV не влияло на запоминание, а повреждение правого IMHV вызывало амнезию. Все это схематически показано на рис. 11.3.

Результаты были интригующими. Размышляя над ними, я решил, что все можно объединить, исходя из несколько механистической модели, в которой первичный след памяти о бусине и реакции избегания образуется в левом IMHV, а затем, спустя несколько часов после обучения, «перекочевывает» сначала в правый IMHV, а потом в правый и левый LPO (рис. 11.4).

Я пришел к этой схеме исключительно на основании логики экспериментов с повреждением мозга. Но подобная схема шокирует нейроанатомов, у которых тут же возникает очевидный вопрос: разве есть какие-то прямые нервные пути между IMHV и LPO? Согласно простой концепции коннекционизма, такие пути действительно необходимы. В то время, когда мы приступали к исследованию, мы не знали, существуют ли они, но это казалось маловероятным. Нам было известно, что все нервные пути от органов чувств, таких как глаза и вкусовые рецепторы, сходятся к IMHV. Мы знали даже о непрямых связях между IMHV и LPO. Именно поэтому IMHV рассматривались как некие «ассоциативные зоны», где интегрируется разнообразная входная информация - например, сопоставляется зрительное восприятие бусины с ощущением ее вкуса. Напротив, LPO находятся на выходной стороне мозга, в области, ответственной за двигательные функции (как, например, клевание) и, возможно, также за реакции «эмоционального» типа. После начала наших опытов анатомия мозга цыплят стала несколько яснее. Между IMHV и LPO действительно нет простых связей, хотя, по-видимому, существует непрямой путь через третий отдел мозга - так называемый архистриатум.

Но и без учета анатомических данных приведенная гипотетическая схема (рис. 11.4) перемещения следов памяти позволяет сделать ряд предсказаний. В частности, из нее следует, что повреждение правого IMHV до начала обучения (само по себе не вызывающее амнезии) должно прерывать последовательность событий, и тогда след памяти «застрянет» в левом IMHV, не имея возможности переместиться в LPO. Повреждение после обучения, обычно приводящее к амнезии, теперь уже не вызовет ее. Высказав это предположение, мы тут же (во всяком случае не позднее чем через месяц) проверили его (рис. 11.5).

Оно подтвердилось. Тогда Дейв, Терри и я решили опубликовать обобщающую статью с описанием всех новых экспериментов. Мы быстро подготовили черновой вариант, но, когда уселись, чтобы вместе доработать его, кто-то (сейчас уже не помню кто) неожиданно сказал: «А что, если до обучения повредить правый IMHV?». Мы знали, что само по себе такое повреждение не дает амнестического эффекта, а наша модель предсказывает, что след памяти в этом случае должен оставаться в левом IMHV -- просто из-за отсутствия выхода. Поэтому у цыплят с поврежденным до обучения правым IMHV повреждение левого IMHV после обучения приведет к амнезии. Такой вариант опыта мог действительно стать окончательной проверкой. Мы отложили статью в сторону и потратили еще месяц на новый эксперимент. Вот что мы получили (рис. 11.6):

До этого я был готов, как некий научный Пуаро, собрать всех подозреваемых в гостиной и указать виновного, как было совершено преступление, то бишь как работает память. Теперь это было исключено. Эксперимент дал однозначный результат - целиком отрицательный. Ничего, пустота, нуль, никакой амнезии. След памяти не мог перейти в правый IMHV, но он определенно не остался и в левом. Куда же он подевался?

Почти полвека назад психолог Карл Лэшли написал классическую статью, обобщив результаты десятилетних экспериментов с обучением крыс. Он обучал их ориентироваться в сложных лабиринтах, а потом удалял отдельные участки мозговой коры, чтобы выяснить, где сохраняются следы памяти. К своему удивлению, он не обнаружил специфических участков, удаление которых приводило бы к полной утрате усвоенного навыка; вместо этого навык постепенно ухудшался по мере увеличения размеров удаленной области коры. Создавалось впечатление, что память зависит просто от количества мозгового вещества. На основе этих наблюдений Лэшли построил концепцию «эквипотенциальности» коры. Свою статью он озаглавил «В поисках энграммы» и закончил ее выводом, что память одновременно присутствует в мозгу везде и нигде [4].

Опыты Лэшли и его неутешительные выводы утратили актуальность в результате последующих экспериментов, однако парадокс локализации памяти остался. Это напоминает мне, во-первых, о том, что при повреждении IMHV и LPO мы изучаем не функции этих областей, а функции остального мозга, которые быстро перестраиваются в отсутствие двух первых; и, во-вторых, о том, что память нельзя понимать как нечто статичное, «находящееся» строго в одном месте или в небольшой группе клеток; она существует в более динамичной и рассеянной форме. Кроме того, мозг - это тонко и сложно организованная структура с многообразными средствами функционального обеспечения. Вы мешаете ему осуществлять какую-то деятельность, а он находит другие пути к той же цели. Блокируете оптимальные связи между IMHV и LPO, a цыпленок находит им замену. Мозг действует не как набор стандартно соединенных мелких ячеек, а как функциональная система, насыщенная разнообразными связями. Конечно, всегда следует помнить об анатомии мозга, но нельзя замыкаться в ней, поскольку ясно, что и сам мозг не сводится к анатомически выявляемым структурам. Настаивать на его механистическом объяснении, игнорируя мои предостережения о неразумности редукционизма, - это значит обрекать эксперимент на погружение в трясину парадоксальных результатов.


Разделы:Скорочтение - как читать быстрее | Онлайн тренинги по скорочтению. Пошаговый курс для освоения навыка быстрого чтения | Проговаривание слов и увеличение скорости чтения | Угол зрения - возможность научиться читать зиг-загом | Концентрация внимания - отключение посторонних шумов Медикаментозные усилители - как повысить концентрирующую способность мозга | Запоминание - Как читать, запоминать и не забывать | Курс скорочтения - для самых занятых | Статьи | Книги и программы для скачивания | Иностранный язык | Развитие памяти | Набор текстов десятью пальцами | Медикаментозное улучшение мозгов | Обратная связь